C 练习实例16 - 最大公约数和最小公倍数
题目:输入两个正整数m和n,求其最大公约数和最小公倍数。
程序分析:
(1)最小公倍数=输入的两个数之积除于它们的最大公约数,关键是求出最大公约数;
(2)求最大公约数用辗转相除法(又名欧几里德算法)
 1)证明:设c是a和b的最大公约数,记为c=gcd(a,b),a>=b,
               令r=a mod b
               设a=kc,b=jc,则k,j互素,否则c不是最大公约数
               据上,r=a-mb=kc-mjc=(k-mj)c
               可知r也是c的倍数,且k-mj与j互素,否则与前述k,j互素矛盾,
               由此可知,b与r的最大公约数也是c,即gcd(a,b)=gcd(b,a mod b),得证。
2)算法描述:
第一步:a ÷ b,令r为所得余数(0≤r 第二步:互换:置 a←b,b←r,并返回第一步。
实例
//  Created by www.xuhuhu.com on 15/11/9.
//  
//
 
#include<stdio.h>
int main()
{
    int a,b,t,r,n;
    printf("请输入两个数字:\n");
    scanf("%d %d",&a,&b);
    if(a<b)
    {t=b;b=a;a=t;}
    r=a%b;
    n=a*b;
    while(r!=0)
    {
        a=b;
        b=r;
        r=a%b;
    }
    printf("这两个数的最大公约数是%d,最小公倍数是%d\n",b,n/b);
    
    return 0;
}
以上实例输出结果为:
请输入两个数字: 12 26 这两个数的最大公约数是2,最小公倍数是156

 C 语言经典100例
 C 语言经典100例